

Introduction:

> Single object tracking:

Target localization in the video frames.

> Existing frameworks:

Tracking by detection vs. discriminative correlation filter. \bullet

Insights on the Discriminative Correlation Filter (DCF): Pros:

- Efficient correlation operation in the Fourier domain.
- Dense prediction for target locations.

Cons:

- Boundary effect via Fourier transform. \bullet
- The whole framework is empirically designed (i.e., filter weights training, model update, feature integration).

Our formulations:

 \succ The objective function of DCF is ridge regression:

 $W^* = argmin_W ||W * X - Y||^2 + \lambda \cdot ||W||^2$

- \succ We use single convolutional layer W to replace DCF.
 - \checkmark End-to-end integration with convolutional features.
 - \checkmark Filter weights optimization via gradient descent.
- > We adopt residual learning to measure the difference between the convolutional layer output and the ground truth.

$$\mathcal{H}(x) = \mathcal{F}(x, \{W_r\}) + W * x$$

where \mathcal{H} is the ground truth optimal mapping and \mathcal{F} is the residual mapping.

Our contributions:

- \checkmark We formulate feature extraction and response generation in an end-to-end form via CNN. We adopt back propagation for model update and fully exploit the deep architecture.
- ✓ We use residual learning to handle large appearance variations, which alleviates model degradation.
- \checkmark State-of-the-art performance on the prevalent benchmarks.

We show evaluations on the OTB 2015 and VOT 2016 datasets in the paper. Our implementation is available online.